STORM WATER MANAGEMENT CALCULATIONS

FOR

RECEIVED

PROPOSED SITE PLAN

AUG - 9 2019

LAWRENCE TOWNSHIP ENGINEERING DEPT.

MERCER COUNTY

NEW JERSEY

BLOCK 2007, LOT 23.01

Project No. 4432

June 21, 2019

PREPARED BY
GRYBOWSKI GROUP, LLC.
Civil Engineering and Land Surveying
8 Eric Court
Lawrenceville, New Jersey 08648
(609) 512-1644

Grybowski Group, P.C.

DANIEL W. CARUSO, P.E.

NJPE GE35687

TABLE OF CONTENTS

COVER SHEET	1
TABLE OF CONTENTS	2
DESIGN SUMMARY	3
DESIGN FLOW SUMMARY CHART	4
FLOW SCHEMATIC	5
PROPOSED CONDITIONS	
FLOWING TO INFILTRATION	
CHAMBERS	6 - 9
PROPOSED CONDITIONS	
INFILTRATOR CHAMBERS	
ROUTING	10 - 17
SOIL LOGS	18 - 19

DESIGN SUMMARY

Drainage design calculations for the proposed subdivision are presented herein. The SCS TR-55 method was used throughout to determine the quantity of storm water run-off from the site. The (2 yr., 10 yr., & 25 yr.) storm events were analyzed using the NRCS New Jersey 24 Hour Rainfall Frequency data.

Design Flow Summary Chart

EXISTING CONDITIONS

STORM EVENTS	2 yr.	10 yr.	25 ytr.	
PROPOSED CONDITION	<u>ONS</u>			
STORM EVENTS	2 yr.	10 yr.	25 yr.	
PROPOSED CONDITIONS FLOWING TO INFILTRATION CHAMBERS	0 12 <i>1</i> v.137	A 2AK v.2vv	A 758 V.250	
PROPOSED CONDITIONS INFILTRATOR CHAMBERS ROUTING	0	0	0	

There will be no adverse impact to adjoining property from this project.

FILTRATOR ROUTING

PROPOSED CONDITIONS FLOWING TO INFILTRATION CHAMBERS

06-21-2019

PROPOSED

Hyd. No. 1

Hydrograph	Туре	= NF	RCS Ru	noff					Peak I	Flow	= 0.1	134 cfs
Storm Frequ	uency	= 2-	yr						Time t	o Peak	= 12	2.07 hrs
Time Interva	al	= 2 r	min						Runof	f Volume	= 45	3 cuft
Drainage Ar	ea	= 0.0	042 ac						Curve	Number	= 98	;*
Tc Method		= Us	ser						Time o	of Conc. (To) = 6.0	0 min
Total Rainfa	11	= 3.4	40 in						Desig	n Storm	= Ty	pe III
Storm Dura	tion	= 24	hrs						Shape	Factor	= 48	14
* Composite Cf												
AREA (ac) CN 0.042 98	IMPER	RIPTION WIOUS										
0.042 98	Weight	ted CN Metho	od Employed			0 4	142 -6-					
0.14						ωp = α).13 cfs					
0.13											19	
0.12												
0.11												
0.1												
0.09												
0.08-											- 11	
(SJ) 0.07												
0.06												
0.05												
0.04												
0.03												
0.02-												
0.01												`
0 1	1	2	7 7 3	4	5	' T 6	7 Time (hrs)	8	9	10 11	12	13 1

Hydrology Studio v 3.0.0.10 06-21-2019

PROPOSED

Hyd. No. 1

Hydrology Studio v 3.0.0.10 06-21-2019

PROPOSED

Hyd. No. 1

PROPOSED CONDITIONS INFILTRATOR CHAMBERS ROUTING

Hydrograph Report

Hydrology Studio v 3.0.0.10 06-21-2019

INFILTRATOR ROUTING

Hyd. No. 2

Hydrograph Type	= Pond Route	Peak Flow	= 0.000 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.00 hrs
Time Interval	= 2 min	Hydrograph Volume	= 0.000 cuft
Inflow Hydrograph	= 1 - PROPOSED	Max. Elevation	= 97.28 ft
Pond Name	= INFILTRATORS	Max. Storage	= 453 cuft

Pond Routing by Storage Indication Method

Qp = 0.00 cfs

Hydrograph Report

Hydrology Studio v 3.0.0.10 06-21-2019

INFILTRATOR ROUTING

Hyd. No. 2

= Pond Route	Peak Flow	= 0.000 cfs
= 10-yr	Time to Peak	= 0.00 hrs
= 2 min	Hydrograph Volume	= 0.000 cuft
= 1 - PROPOSED	Max. Elevation	= 98.05 ft
= INFILTRATORS	Max. Storage	= 709 cuft
	= 10-yr = 2 min = 1 - PROPOSED	= 10-yr Time to Peak = 2 min Hydrograph Volume = 1 - PROPOSED Max. Elevation

Pond Routing by Storage Indication Method

Qp = 0.00 cfs

Hydrograph Report

Hydrology Studio v 3.0.0.10 06-21-2019

INFILTRATOR ROUTING

Hyd. No. 2

Hydrograph Type	= Pond Route	Peak Flow	= 0.000 cfs
Storm Frequency	= 25-yr	Time to Peak	= 0.00 hrs
Time Interval	= 2 min	Hydrograph Volume	= 0.000 cuft
Inflow Hydrograph	= 1 - PROPOSED	Max. Elevation	= 98.97 ft
Pond Name	= INFILTRATORS	Max. Storage	= 895 cuft

Pond Routing by Storage Indication Method

Qp = 0.00 cfs

06-21-2019

INFILTRATORS

Stage-Storage

Underground Chambe		Stage / Storage Table							
Description	·		Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)			
Invert Elev Down, ft	96.67	000	00.07	600	0.000				
Chamber Rise, ft	1.33	0.00 0.17	95.67 95.84	502 502	0.000 33.4	0.000 33.4			
Chamber Shape	Arch	0.33	96.00	502	33.4	66.8			
·		0.50	96.17	502	33.4	100			
Chamber Span, ft	2.83	0.67	96.34	502	33.4	134			
Barrel Length, ft	36.00	0.83	96.50	502	33.4	167			
	•	1.00	96.67	502	33.4	200			
No. Barrels	3	1.17	96.84	502	70.1	271			
Barrel Slope, %	0.00	1.33	97.00	502	69.8	340			
Manadan ota	V = =	1.50	97.17	502	68.6	409			
Headers, y/n	Yes	1.67	97.34	502	66.7	476			
Stone Encasement, y/n	Yes	1.83	97.50	502	64.0	540			
Engagement Bottom Floretion #	95.67	2.00	97.67	502	60.2	600			
Encasement Bottom Elevation, ft	95.67	2.16	97.83	502	54.9	655			
Encasement Width per Chamber, ft	3.83	2.33	98.00	502	45.4	700			
Encocament Donth #	3.33	2.50	98.17	502	33.4	734			
Encasement Depth, ft	3.33	2.66	98.33	502	33.4	767			
Encasement Voids, %	40.00	2.83	98.50	502	33.4	800			
		3.00	98.67	502	33.4	834			
		3.16	98.83	502	33.4	867			
		3.33	99.00	502	33.4	901			

06-21-2019

INFILTRATORS

Stage-Discharge

Culuart / Orifican	Codeman		Orifices	Perforated Riser	
Culvert / Orifices	Culvert	1	2	3	Periorated Riser
Rise, in					Perf. Rise, in
Span, in					Perf. Span, in
No. Barrels					No. Perforations
Invert Elevation, ft					Invert Elevation, ft
Orifice Coefficient, Co					Height, ft
Length, ft					Orifice Coefficient, Co
Barrel Slope, %					
N-Value, n	0.000				
Weirs	Riser*	1	Weirs 2	3	Ancillary
Shape / Type					Exfiltration, in/hr
Crest Elevation, ft					
Crest Length, ft					
Angle, deg					
Weir Coefficient, Cw					

Hydrology Studio v 3.0.0.10 06-21-2019

INFILTRATORS

Stage-Storage-Discharge Summary

Stage	Elev.	Storage	Culvert	(Orifices, cf	s	Riser W	Weirs, cfs		Pf Riser	f Riser Exfil User	User	Total	
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	95.67	0.000												0.000
0.17	95.84	33.4			!									0.000
0.33	96.00	66.8												0.000
0.50	96.17	100			}						1	•	}	0.000
0.67	96.34	134]				}					0.000
0.83	96.50	167			!			1						0.000
1.00	96.67	200						1						0.000
1.17	96.84	271										}		0.000
1.33	97.00	340			<u> </u>						İ			0.000
1.50	97.17	409									1		1	0.000
1.67	97.34	476]				<u> </u>	,		0.000
1.83	97.50	540)		Ì	}			}]	0.000
2.00	97.67	600												0.000
2.16	97.83	655												0.000
2.33	98.00	700												0.000
2.50	98.17	734										Ì		0.000
2.66	98.33	767												0.000
2.83	98.50	800												0.000
3.00	98.67	834										 -		0.000
3.16	98.83	867												0.000
3.33	99.00	901												0.000
														JI
			-											
	ĺ	ļ												
		ĺ												
-														
			1											
ļ	1				İ									
	Ī	Ì	1						,					
		1]]										
		l		ļ										
	ļ				Ì									
- 1				İ]		i							
]	1	j		- 1		}		ļ					
1]			Í]	Į					
				memed weir		1			<u>}</u>					

06-21-2019

INFILTRATORS

Pond Drawdown

Stage (ft) INFILTRATORS - Drain Time (ft) v9l3

SITE SOIL LOGS

			cer / Lawrence CONSTRUCT/A	LTER/REP	AIR	Block =	23.01	2007
AN IN	NDIVIDUAL S	SUBSURFACE	SEWAGE DISPO	SAL SYSTE	CM	Lot -3	007	<u>23</u> ,011
FORM	M 2B - SOIL L	OC AND INT	ERPRETATION:					
1.	Log Number	1	Method (Check	one):	Profile p	oit	Boring	;
	Soil Log 1 Inches)	Coarse Fragments	ume and Symbol; Estima s, If Present; Structure; Ne e and Contrast, If Preser	Moist or Dry Co		Volume %		
10 - 30 30 - 73 72 - 10	0" 10YR 6/6 2" 10YR 6/8 08" 7.5YR 6/6 Few medi 20" 10YR 6/3	Brownish yellow Reddish yellow ium faint mottle	w sandy clay loam. w sandy loam. SAB, sandy loam. SAB, s of 10YR 7/1 (light dy loam. Single gra	, moist, mois moist, friabl gray) @ 72"	st, friable, e, 25% qı '.	uartzite g	ravel.	
3.		er Observation Indicate Depth Flooded - Depth	s: n after Ho	ours				
4.	Fractured Massive I Excessive Excessive Hydraulic Perched 2	Rock Substraturely Coarse Horizely Coarse Substraturely Coarse Substrative Cally Restrictive Cone of Saturation	Appropriate Categor m - Depth to Top n - Depth to Top con - Depth Top to E ratum - Depth Top to Horizon - Depth To Substratum - Depth on - Depth to Top on - Depth to Top on - Depth to Top	Bottom to Bottom op to Bottom to Top				
5.	Soil Suitabili	ty Classification	n: I					
6.	I am aware tha	at the falsification	ation furnished on fo on of data is a violati is subject to penaltion	ion of the Wa	ater Pollu	tion Con	trol Act	
Signat	ure of Site Ev	aluator	John Luyber		Dat	e <u>5/17/1</u>	19	
Signat	ure of Profess	ional Engineer			Lice	nse #		